Search results

Search for "electron donor" in Full Text gives 157 result(s) in Beilstein Journal of Organic Chemistry.

Synthesis and properties of 6-alkynyl-5-aryluracils

  • Ruben Manuel Figueira de Abreu,
  • Till Brockmann,
  • Alexander Villinger,
  • Peter Ehlers and
  • Peter Langer

Beilstein J. Org. Chem. 2024, 20, 898–911, doi:10.3762/bjoc.20.80

Graphical Abstract
  • (5k, 5l, 5r). However, this effect seems to be neutralized when using an electron-rich arylboronic acid (5m). Lower yields are obtained when an acceptor group is present on the arylalkyne (5p, 5q). This leads to the suggestion that an electron-donor group activates and an electron-withdrawing group
  • deactivates the compound for the subsequent Suzuki reaction. Furthermore, lower yields were generally observed when a strong electron-donor or -acceptor was attached to the phenyl group at position 5. Higher yields could be obtained by reducing the steric hindrance at position 5 by introducing a 5-membered
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Switchable molecular tweezers: design and applications

  • Pablo Msellem,
  • Maksym Dekthiarenko,
  • Nihal Hadj Seyd and
  • Guillaume Vives

Beilstein J. Org. Chem. 2024, 20, 504–539, doi:10.3762/bjoc.20.45

Graphical Abstract
  • electronic or geometrical properties upon oxidation or reduction. TTF and derivatives tweezers One of the most widely used electroactive moieties is tetrathiafulvalene (TTF). Its electron-donor π-system can form non-covalent interactions with various electron-poor π-systems, and those interactions can be
PDF
Album
Review
Published 01 Mar 2024

Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles

  • Periklis X. Kolagkis,
  • Eirini M. Galathri and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2024, 20, 379–426, doi:10.3762/bjoc.20.36

Graphical Abstract
PDF
Album
Review
Published 22 Feb 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • electrochemical conditions and can be influenced by a number of factors, including the nature of the electron donor, the use of Brønsted and Lewis acids, and the possibility of forming charge-transfer complexes. Such versatility creates many opportunities to influence the reaction conditions, providing a number
  • resulting concentration of radicals. In such instances, opting for a stronger catalytic reductant or utilizing a stoichiometric electron donor can greatly improve the efficiency of radical generation. On the other hand, additional factors such as the ability of Brønsted and Lewis acid additives to promote
  • ], have been employed as suitable photocatalysts (Scheme 4B). Under visible light irradiation the photocatalyst (PC) is excited into its corresponding excited state (*PC), where it can be reduced by a suitable electron donor such as DIPEA or Hantzsch ester to generate the reduced form of the photocatalyst
PDF
Album
Perspective
Published 21 Feb 2024
Graphical Abstract
  • TCBD, donor–acceptor conjugated systems have been systematically developed by coupling the TCBD motif with an electron donor, resulting in the experimental observation of photoinduced electron- and energy-transfer events. In 2014, comprehensive investigations on the photophysical properties of
  • guaranteeing long-lived CS states. Guldi et al. synthesized 16 distinct donor–acceptor conjugated molecules, denoted as 89–104 (Figure 11). These molecules comprised ZnP as an electron donor and push–pull chromophores with varying reduction potentials as electron acceptors interconnected by various rigid
  • spacers [147][148]. Comprehensive analyses and characterizations of the photoinduced electron-transfer processes in these conjugates were conducted. In these molecular designs, the center-to-center distances of the electron donor and acceptor ranged from 13.9 Å to 25.1 Å. Marcus curves were obtained by
PDF
Album
Review
Published 22 Jan 2024

Visible-light-induced radical cascade cyclization: a catalyst-free synthetic approach to trifluoromethylated heterocycles

  • Chuan Yang,
  • Wei Shi,
  • Jian Tian,
  • Lin Guo,
  • Yating Zhao and
  • Wujiong Xia

Beilstein J. Org. Chem. 2024, 20, 118–124, doi:10.3762/bjoc.20.12

Graphical Abstract
  • NMR (Figure S3 in Supporting Information File 1) [30] and high-resolution mass spectrometry. You and co-workers proposed a reaction pathway involving the combination of the indole substrate and Umemoto’s reagent to form an electron donor–acceptor (EDA) complex [31]. We excluded the possibility of an
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2024

Aromatic systems with two and three pyridine-2,6-dicarbazolyl-3,5-dicarbonitrile fragments as electron-transporting organic semiconductors exhibiting long-lived emissions

  • Karolis Leitonas,
  • Brigita Vigante,
  • Dmytro Volyniuk,
  • Audrius Bucinskas,
  • Pavels Dimitrijevs,
  • Sindija Lapcinska,
  • Pavel Arsenyan and
  • Juozas Vidas Grazulevicius

Beilstein J. Org. Chem. 2023, 19, 1867–1880, doi:10.3762/bjoc.19.139

Graphical Abstract
  • emitter based on a pyridine-3,5-dicarbonitrile scaffold (to serve as an electron acceptor) directly linked to a carbazole moiety (to serve as an electron donor) was reported by the groups of Dong and Zhang in 2015 [4]. 2,6-Di(9H-carbazol-9-yl)-4-phenylpyridine-3,5-dicarbonitrile (CPC) showed an extremely
  • of pyridine-3,5-dicarbonitrile-derived electron-acceptor and acridine electrondonor moieties. The films of molecular mixtures of these emitters with the hosts exhibited excellent photophysical properties [6]. They showed PLQY of up to 91%, tiny singlet–triplet energy gaps of 0.01 eV, and ultrashort
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2023

Controlling the reactivity of La@C82 by reduction: reaction of the La@C82 anion with alkyl halide with high regioselectivity

  • Yutaka Maeda,
  • Saeka Akita,
  • Mitsuaki Suzuki,
  • Michio Yamada,
  • Takeshi Akasaka,
  • Kaoru Kobayashi and
  • Shigeru Nagase

Beilstein J. Org. Chem. 2023, 19, 1858–1866, doi:10.3762/bjoc.19.138

Graphical Abstract
  • produced chemically or electrochemically. C602− is a strong electron donor and potential nucleophile that reacts with electrophiles [6][7][8][9][10][11]. The mechanism for the reaction of C602− with alkyl halides has been studied in detail by Fukuzumi et al., who found that the reaction occurs via electron
  • 3a was confirmed by the SC-XRD analysis, which showed that the addition site of addendum was indeed at the C10 position of La@C2v-C82 (Figure 5). The La@C2v-C82 anion can act as an electron donor and a nucleophile. To confirm the reaction mechanism, charge density and the p-orbital axis vector (POAV
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2023

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • smoothly delivered an electron donor–acceptor (EDA) complex II via coulombic interactions. Upon 456 nm blue LED light irradiation, the EDA complex II underwent a single electron transfer (SET) process, followed by subsequent decarboxylation to produce the alkyl radical intermediate A, accompanied by
  • amount of ammonium iodide under irradiation in the absence of triphenylphosphine (Scheme 12). The generation of alkyl radicals was attributed to the photoactivation of a transient electron donor–acceptor complex formed between iodide and N-(acyloxy)phthalimide, in line with earlier findings. These
PDF
Album
Review
Published 22 Nov 2023

Selectivity control towards CO versus H2 for photo-driven CO2 reduction with a novel Co(II) catalyst

  • Lisa-Lou Gracia,
  • Philip Henkel,
  • Olaf Fuhr and
  • Claudia Bizzarri

Beilstein J. Org. Chem. 2023, 19, 1766–1775, doi:10.3762/bjoc.19.129

Graphical Abstract
  • purpose, three main components are needed: a photosensitizer (PS), which acts like a light-antennae harvesting system in natural photosynthesis, a catalyst (Cat.), reacting directly with CO2 after being reduced, and a sacrificial electron donor (SeD). When the involved (photo)catalysts are homogeneous
  • developing the major components of a photocatalytic system for CO2 reduction, such as the photosensitizer (PS), the catalyst, and the sacrificial electron donor (SeD). Nevertheless, the solvent and eventual additives play an important role too [6], as they can influence the (photo)redox properties of the
  • [20][21][41]. In addition, the benzimidazolidine derivative, BIH (1,3-dimethyl-2-phenyl-benzo[d]imidazolidine) (shown in Figure 1) suited well as a sacrificial electron donor, because of its high reducing power [47]. The photocatalytic experiments were performed under 420 nm light irradiation unless
PDF
Album
Supp Info
Full Research Paper
Published 17 Nov 2023

Benzoimidazolium-derived dimeric and hydride n-dopants for organic electron-transport materials: impact of substitution on structures, electrochemistry, and reactivity

  • Swagat K. Mohapatra,
  • Khaled Al Kurdi,
  • Samik Jhulki,
  • Georgii Bogdanov,
  • John Bacsa,
  • Maxwell Conte,
  • Tatiana V. Timofeeva,
  • Seth R. Marder and
  • Stephen Barlow

Beilstein J. Org. Chem. 2023, 19, 1651–1663, doi:10.3762/bjoc.19.121

Graphical Abstract
  • •+/1H and 12•+/12 potentials are relevant to the air stability of the hydrides and dimers, respectively, as well as to other processes in which 1H or 12 acts as an electron donor, such as the initation step proposed for the radical-chain dehalogenation of α-dihaloketones by a 1H derivative [58] and
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2023

Visible-light-induced nickel-catalyzed α-hydroxytrifluoroethylation of alkyl carboxylic acids: Access to trifluoromethyl alkyl acyloins

  • Feng Chen,
  • Xiu-Hua Xu,
  • Zeng-Hao Chen,
  • Yue Chen and
  • Feng-Ling Qing

Beilstein J. Org. Chem. 2023, 19, 1372–1378, doi:10.3762/bjoc.19.98

Graphical Abstract
  • ., Zibo 256401, China 10.3762/bjoc.19.98 Abstract A visible-light-induced nickel-catalyzed cross coupling of alkyl carboxylic acids with N-trifluoroethoxyphthalimide is described. Under purple light irradiation, an α-hydroxytrifluoroethyl radical generated from a photoactive electron donor–acceptor
  • -difluoroethoxyphthalimide as the fluoroalkylating reagent failed to afford the desired product. According to our previous work [39] and literature precedent [27][35][38], a possible mechanism is proposed in Figure 2. The interaction between 2 and HE generates an electron donor–acceptor (EDA) complex A, which undergoes a
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023
Graphical Abstract
  • Grace A. Lowe van ’t Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, Amsterdam, 1098 XH, The Netherlands 10.3762/bjoc.19.88 Abstract This review surveys advances in the literature that impact organic sacrificial electron donor recycling in
  • artificial photosynthesis. Systems for photocatalytic carbon dioxide reduction are optimized using sacrificial electron donors. One strategy for coupling carbon dioxide reduction and water oxidation to achieve artificial photosynthesis is to use a redox mediator, or recyclable electron donor. This review
  • sacrificial electron donors, and for researchers interested in designing new redox mediator and recyclable electron donor species. Keywords: artificial photosynthesis; photocatalysis; redox couple; sacrificial electron donor; solar fuels; Introduction Artificial photosynthesis research has resulted in the
PDF
Album
Supp Info
Review
Published 08 Aug 2023

Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control

  • Carlee A. Montgomery and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2023, 19, 1171–1190, doi:10.3762/bjoc.19.86

Graphical Abstract
  • include nucleophile σ-hole selectivity, and how ylide structural modifications and intramolecular halogen bonding (e.g., the ortho-effect) can improve ylide stability or solubility, and alter reaction outcomes. Keywords: electron donor–acceptor complex; halogen bonding; σ-holes; iodonium ylides; ortho
  • as an electron donor–acceptor complex) [121], and this bonding description has recently been used to support proposals for single electron transfer (SET) reaction pathways between iodonium ylides and various halogen bond acceptors. Alternatively, halogen-bonded complexes of iodonium ylides could lead
  • to changes in an ylide’s UV–vis absorption profile, or to its overall basicity or nucleophilicity, both of which could lead new and unexpected reactivity. The first example that specifically invoked electron donor–acceptor complexes of iodonium ylides was reported in 2018 by Wang and co-workers [122
PDF
Album
Review
Published 07 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • SET with an electron acceptor (A), leading to PC•+ and A•−. The ground state photocatalyst is then regenerated by an SET reaction with an electron donor (D), affording also D•+. Both species described can be further involved in various organic transformations to form the target products (or byproducts
  • late-stage functionalization (17i and 17j) (Figure 12A). Interestingly, sodium oxalate could be used as the electron donor provided a catalytic loading of 4-cyanopyridine was added. Although the role of the latter species was not proposed by authors, it is more facile to reduce than an aryl chloride so
  • could act as an electron shuttle (potentially via a π-stacking assembly). The synthetic scope was extended to C(sp2)–P bond formations by trapping with phosphines or phosphites (Figure 12B), and in all these cases DIPEA was used as the electron donor (0.5–5 equiv). Arylphosphonium chlorides 20 that are
PDF
Album
Review
Published 28 Jul 2023

The effect of dark states on the intersystem crossing and thermally activated delayed fluorescence of naphthalimide-phenothiazine dyads

  • Liyuan Cao,
  • Xi Liu,
  • Xue Zhang,
  • Jianzhang Zhao,
  • Fabiao Yu and
  • Yan Wan

Beilstein J. Org. Chem. 2023, 19, 1028–1046, doi:10.3762/bjoc.19.79

Graphical Abstract
  • University, Beijing 100875, P. R. China Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, P. R. China 10.3762/bjoc.19.79 Abstract A series of 1,8-naphthalimide (NI)-phenothiazine (PTZ) electron donor
  • intersystem crossing (rISC) is slow, without coupling with an approximate 3LE state. These studies are useful for an in-depth understanding of the photophysical mechanisms of the TADF emitters, as well as for molecular structure design of new electron donor–acceptor TADF emitters. Keywords: charge-transfer
  • ; electron donor; intersystem crossing; TADF; triplet state; Introduction Thermally activated delayed fluorescence (TADF) compounds are promising emitters to be used in organic light-emitting diodes (OLED) [1][2][3][4][5][6][7][8][9][10][11][12]. These emitters have the advantage of low cost and high
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2023

Direct C2–H alkylation of indoles driven by the photochemical activity of halogen-bonded complexes

  • Martina Mamone,
  • Giuseppe Gentile,
  • Jacopo Dosso,
  • Maurizio Prato and
  • Giacomo Filippini

Beilstein J. Org. Chem. 2023, 19, 575–581, doi:10.3762/bjoc.19.42

Graphical Abstract
  • tool to guide the development of greener and more convenient synthetic protocols [7][8][9][10][11][12]. In this context, photochemical approaches based on electron donor–acceptor (EDA) complexes have been successfully exploited to drive the direct C–H functionalization of a large number of organic
PDF
Album
Supp Info
Letter
Published 27 Apr 2023

NaI/PPh3-catalyzed visible-light-mediated decarboxylative radical cascade cyclization of N-arylacrylamides for the efficient synthesis of quaternary oxindoles

  • Dan Liu,
  • Yue Zhao and
  • Frederic W. Patureau

Beilstein J. Org. Chem. 2023, 19, 57–65, doi:10.3762/bjoc.19.5

Graphical Abstract
  • ethers and N-heteroarenes by using a novel catalytic system based on sodium iodide (NaI) and triphenylphosphine (PPh3), suggested to function as an electron donor–acceptor (EDA) complex [55][56][57][58][59][60]. Compared to previously reported radical reactions, this novel catalytic system has the key
PDF
Album
Supp Info
Letter
Published 16 Jan 2023

Naphthalimide-phenothiazine dyads: effect of conformational flexibility and matching of the energy of the charge-transfer state and the localized triplet excited state on the thermally activated delayed fluorescence

  • Kaiyue Ye,
  • Liyuan Cao,
  • Davita M. E. van Raamsdonk,
  • Zhijia Wang,
  • Jianzhang Zhao,
  • Daniel Escudero and
  • Denis Jacquemin

Beilstein J. Org. Chem. 2022, 18, 1435–1453, doi:10.3762/bjoc.18.149

Graphical Abstract
  • investigate the joint influence of the conformation flexibility and the matching of the energies of the charge-transfer (CT) and the localized triplet excited (3LE) states on the thermally activated delayed fluorescence (TADF) in electron donor–acceptor molecules, a series of compact electron donor–acceptor
  • dyads and a triad were prepared, with naphthalimide (NI) as electron acceptor and phenothiazine (PTZ) as electron donor. The NI and PTZ moieties are either directly connected at the 3-position of NI and the N-position of the PTZ moiety via a C–N single bond, or they are linked through a phenyl group
  • observed in the nanosecond transient absorption spectra with lifetimes in the 4–48 μs range. Computational investigations show that the orthogonal electron donor–acceptor molecular structure is beneficial for TADF. These calculations indicate small energetic difference between the 3LE and 3CT states, which
PDF
Supp Info
Full Research Paper
Published 11 Oct 2022

Cytochrome P450 monooxygenase-mediated tailoring of triterpenoids and steroids in plants

  • Karan Malhotra and
  • Jakob Franke

Beilstein J. Org. Chem. 2022, 18, 1289–1310, doi:10.3762/bjoc.18.135

Graphical Abstract
  • variety of biochemical, biophysical and computational methods [17][18][19][20][21]. Key for the oxidative chemistry performed by CYPs is a heme prosthetic group that activates molecular oxygen using electrons from an electron donor such as NADPH. A central Fe(III) ion is coordinated by the heme porphyrine
PDF
Album
Supp Info
Review
Published 21 Sep 2022

Post-synthesis from Lewis acid–base interaction: an alternative way to generate light and harvest triplet excitons

  • Hengjia Liu and
  • Guohua Xie

Beilstein J. Org. Chem. 2022, 18, 825–836, doi:10.3762/bjoc.18.83

Graphical Abstract
  • brand new luminescent properties. In this mini-review, we summarize unique electron donor and acceptor materials which regulate luminescent properties via Lewis acid–base interactions and briefly explain the exploration of their chemical nature and interaction mechanisms. Review Lewis acids as electron
  • 7 in Figure 5), which consisted of the twisted A–π–D–π–A structure with N-(4-aminophenyl)carbazole (CzPA) as electron donor unit, pyridine as electron acceptor unit, and 9,9-dioctylfluorene (F) as π-conjugated linker [32]. Compound 7 showed remarkable dual-fluorescence properties when mixed with a
PDF
Album
Review
Published 12 Jul 2022

Substituent effect on TADF properties of 2-modified 4,6-bis(3,6-di-tert-butyl-9-carbazolyl)-5-methylpyrimidines

  • Irina Fiodorova,
  • Tomas Serevičius,
  • Rokas Skaisgiris,
  • Saulius Juršėnas and
  • Sigitas Tumkevicius

Beilstein J. Org. Chem. 2022, 18, 497–507, doi:10.3762/bjoc.18.52

Graphical Abstract
  • main requirement for efficient TADF is a negligible energy difference between the lowest singlet and triplet states (∆EST) which is often obtained in (hetero)aromatic compounds possessing twisted electron-donor (D) and acceptor (A) fragments with strong intramolecular charge transfer (ICT) [5][6][7
PDF
Album
Supp Info
Full Research Paper
Published 05 May 2022

Comparative study of thermally activated delayed fluorescent properties of donor–acceptor and donor–acceptor–donor architectures based on phenoxazine and dibenzo[a,j]phenazine

  • Saika Izumi,
  • Prasannamani Govindharaj,
  • Anna Drewniak,
  • Paola Zimmermann Crocomo,
  • Satoshi Minakata,
  • Leonardo Evaristo de Sousa,
  • Piotr de Silva,
  • Przemyslaw Data and
  • Youhei Takeda

Beilstein J. Org. Chem. 2022, 18, 459–468, doi:10.3762/bjoc.18.48

Graphical Abstract
  • efficiency (EQE) exceeds the theoretical maximum of those with prompt fluorescent emitters. Most importantly, comparative study of the D–A molecule and its D–A–D counterpart from the viewpoints of the experiments and theoretical calculations revealed the effect of the number of the electron donor on the
  • zero or even negative [12][13], while the SOC is as large as possible. One of the promising molecular design strategies to meet the above-mentioned criteria involves a highly twisted (D)n–(A)m (D: electron donor; A: electron acceptor) system, in which efficient intramolecular charge transfer (ICT
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2022

Synthesis and investigation on optical and electrochemical properties of 2,4-diaryl-9-chloro-5,6,7,8-tetrahydroacridines

  • Najeh Tka,
  • Mohamed Adnene Hadj Ayed,
  • Mourad Ben Braiek,
  • Mahjoub Jabli and
  • Peter Langer

Beilstein J. Org. Chem. 2021, 17, 2450–2461, doi:10.3762/bjoc.17.162

Graphical Abstract
  • their partially hydrogenated analogues, even though they were used as electron-donor groups for OLED applications [42][43]. On the other hand, tetrahydroacridines have received much attention in medicinal chemistry, due to their ability to inhibit topoisomerase enzymes and block the DNA transcription
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2021

Synthesis of phenanthridines via a novel photochemically-mediated cyclization and application to the synthesis of triphaeridine

  • Songeziwe Ntsimango,
  • Kennedy J. Ngwira,
  • Moira L. Bode and
  • Charles B. de Koning

Beilstein J. Org. Chem. 2021, 17, 2340–2347, doi:10.3762/bjoc.17.152

Graphical Abstract
  • substituents in a range of positions. In all cases at least one methoxy substituent was positioned ortho- to the biaryl axis. The other aromatic ring had to contain an oxime ester, which would form an iminyl electron donor, as shown in Scheme 2. As illustrated substrates 13a–f were accessed using the Suzuki
  • electron donor iminyl radical. In fact, iminyl radicals have been identified and studied by EPR spectroscopy in a number of related processes involving oxime derivatives [14]. As an example utilizing substrate 14d, intermediates such as the iminyl radical 17a and the ring closed intermediate 17b (Figure 3
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2021
Other Beilstein-Institut Open Science Activities